Integrale di $$$\frac{1}{x \left(x^{2} + 1\right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{x \left(x^{2} + 1\right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{x \left(x^{2} + 1\right)}\, dx$$$.

Soluzione

Sia $$$u=x^{2} + 1$$$.

Quindi $$$du=\left(x^{2} + 1\right)^{\prime }dx = 2 x dx$$$ (i passaggi si possono vedere »), e si ha che $$$x dx = \frac{du}{2}$$$.

Pertanto,

$${\color{red}{\int{\frac{1}{x \left(x^{2} + 1\right)} d x}}} = {\color{red}{\int{\frac{1}{2 u \left(u - 1\right)} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{u \left(u - 1\right)}$$$:

$${\color{red}{\int{\frac{1}{2 u \left(u - 1\right)} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u \left(u - 1\right)} d u}}{2}\right)}}$$

Esegui la scomposizione in fratti semplici (i passaggi possono essere visualizzati »):

$$\frac{{\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}}}{2} = \frac{{\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}}}{2}$$

Integra termine per termine:

$$\frac{{\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{1}{u} d u} + \int{\frac{1}{u - 1} d u}\right)}}}{2}$$

Sia $$$v=u - 1$$$.

Quindi $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (i passaggi si possono vedere »), e si ha che $$$du = dv$$$.

Quindi,

$$- \frac{\int{\frac{1}{u} d u}}{2} + \frac{{\color{red}{\int{\frac{1}{u - 1} d u}}}}{2} = - \frac{\int{\frac{1}{u} d u}}{2} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$

L'integrale di $$$\frac{1}{v}$$$ è $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- \frac{\int{\frac{1}{u} d u}}{2} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \frac{\int{\frac{1}{u} d u}}{2} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Ricordiamo che $$$v=u - 1$$$:

$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \frac{\int{\frac{1}{u} d u}}{2} = \frac{\ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}}{2} - \frac{\int{\frac{1}{u} d u}}{2}$$

L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Ricordiamo che $$$u=x^{2} + 1$$$:

$$\frac{\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{-1 + {\color{red}{\left(x^{2} + 1\right)}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(x^{2} + 1\right)}}}\right| \right)}}{2}$$

Pertanto,

$$\int{\frac{1}{x \left(x^{2} + 1\right)} d x} = \frac{\ln{\left(x^{2} \right)}}{2} - \frac{\ln{\left(x^{2} + 1 \right)}}{2}$$

Semplifica:

$$\int{\frac{1}{x \left(x^{2} + 1\right)} d x} = \ln{\left(x \right)} - \frac{\ln{\left(x^{2} + 1 \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{x \left(x^{2} + 1\right)} d x} = \ln{\left(x \right)} - \frac{\ln{\left(x^{2} + 1 \right)}}{2}+C$$

Risposta

$$$\int \frac{1}{x \left(x^{2} + 1\right)}\, dx = \left(\ln\left(x\right) - \frac{\ln\left(x^{2} + 1\right)}{2}\right) + C$$$A


Please try a new game Rotatly