$$$x - \frac{1}{x}$$$의 적분
사용자 입력
$$$\int \left(x - \frac{1}{x}\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(x - \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x} d x} + \int{x d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$- \int{\frac{1}{x} d x} + {\color{red}{\int{x d x}}}=- \int{\frac{1}{x} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \int{\frac{1}{x} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
$$$\frac{1}{x}$$$의 적분은 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\frac{x^{2}}{2} - {\color{red}{\int{\frac{1}{x} d x}}} = \frac{x^{2}}{2} - {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
따라서,
$$\int{\left(x - \frac{1}{x}\right)d x} = \frac{x^{2}}{2} - \ln{\left(\left|{x}\right| \right)}$$
적분 상수를 추가하세요:
$$\int{\left(x - \frac{1}{x}\right)d x} = \frac{x^{2}}{2} - \ln{\left(\left|{x}\right| \right)}+C$$
정답
$$$\int \left(x - \frac{1}{x}\right)\, dx = \left(\frac{x^{2}}{2} - \ln\left(\left|{x}\right|\right)\right) + C$$$A