Integralen av $$$x - \frac{1}{x}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$x - \frac{1}{x}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \left(x - \frac{1}{x}\right)\, dx$$$.

Lösning

Integrera termvis:

$${\color{red}{\int{\left(x - \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x} d x} + \int{x d x}\right)}}$$

Tillämpa potensregeln $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=1$$$:

$$- \int{\frac{1}{x} d x} + {\color{red}{\int{x d x}}}=- \int{\frac{1}{x} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \int{\frac{1}{x} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Integralen av $$$\frac{1}{x}$$$ är $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$\frac{x^{2}}{2} - {\color{red}{\int{\frac{1}{x} d x}}} = \frac{x^{2}}{2} - {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Alltså,

$$\int{\left(x - \frac{1}{x}\right)d x} = \frac{x^{2}}{2} - \ln{\left(\left|{x}\right| \right)}$$

Lägg till integrationskonstanten:

$$\int{\left(x - \frac{1}{x}\right)d x} = \frac{x^{2}}{2} - \ln{\left(\left|{x}\right| \right)}+C$$

Svar

$$$\int \left(x - \frac{1}{x}\right)\, dx = \left(\frac{x^{2}}{2} - \ln\left(\left|{x}\right|\right)\right) + C$$$A


Please try a new game Rotatly