$$$e$$$의 적분
사용자 입력
$$$\int e\, de$$$을(를) 구하시오.
풀이
멱법칙($$$\int e^{n}\, de = \frac{e^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$${\color{red}{\int{e d e}}}={\color{red}{\frac{e^{1 + 1}}{1 + 1}}}={\color{red}{\left(\frac{e^{2}}{2}\right)}}$$
따라서,
$$\int{e d e} = \frac{e^{2}}{2}$$
적분 상수를 추가하세요:
$$\int{e d e} = \frac{e^{2}}{2}+C$$
정답
$$$\int e\, de = \frac{e^{2}}{2} + C$$$A
Please try a new game Rotatly