$$$\frac{4 \ln\left(2 x\right) - 9}{x}$$$의 적분
사용자 입력
$$$\int \frac{4 \ln\left(2 x\right) - 9}{x}\, dx$$$을(를) 구하시오.
풀이
Expand the expression:
$${\color{red}{\int{\frac{4 \ln{\left(2 x \right)} - 9}{x} d x}}} = {\color{red}{\int{\left(\frac{4 \ln{\left(x \right)}}{x} - \frac{9}{x} + \frac{4 \ln{\left(2 \right)}}{x}\right)d x}}}$$
각 항별로 적분하십시오:
$${\color{red}{\int{\left(\frac{4 \ln{\left(x \right)}}{x} - \frac{9}{x} + \frac{4 \ln{\left(2 \right)}}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{9}{x} d x} + \int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=9$$$와 $$$f{\left(x \right)} = \frac{1}{x}$$$에 적용하세요:
$$\int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} - {\color{red}{\int{\frac{9}{x} d x}}} = \int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} - {\color{red}{\left(9 \int{\frac{1}{x} d x}\right)}}$$
$$$\frac{1}{x}$$$의 적분은 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} - 9 {\color{red}{\int{\frac{1}{x} d x}}} = \int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} - 9 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=4 \ln{\left(2 \right)}$$$와 $$$f{\left(x \right)} = \frac{1}{x}$$$에 적용하세요:
$$- 9 \ln{\left(\left|{x}\right| \right)} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} + {\color{red}{\int{\frac{4 \ln{\left(2 \right)}}{x} d x}}} = - 9 \ln{\left(\left|{x}\right| \right)} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} + {\color{red}{\left(4 \ln{\left(2 \right)} \int{\frac{1}{x} d x}\right)}}$$
$$$\frac{1}{x}$$$의 적분은 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- 9 \ln{\left(\left|{x}\right| \right)} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} + 4 \ln{\left(2 \right)} {\color{red}{\int{\frac{1}{x} d x}}} = - 9 \ln{\left(\left|{x}\right| \right)} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} + 4 \ln{\left(2 \right)} {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=4$$$와 $$$f{\left(x \right)} = \frac{\ln{\left(x \right)}}{x}$$$에 적용하세요:
$$- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + {\color{red}{\int{\frac{4 \ln{\left(x \right)}}{x} d x}}} = - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + {\color{red}{\left(4 \int{\frac{\ln{\left(x \right)}}{x} d x}\right)}}$$
$$$u=\ln{\left(x \right)}$$$라 하자.
그러면 $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\frac{dx}{x} = du$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\int{\frac{\ln{\left(x \right)}}{x} d x}}} = - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\int{u d u}}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\int{u d u}}}=- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$
다음 $$$u=\ln{\left(x \right)}$$$을 기억하라:
$$- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 2 {\color{red}{u}}^{2} = - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 2 {\color{red}{\ln{\left(x \right)}}}^{2}$$
따라서,
$$\int{\frac{4 \ln{\left(2 x \right)} - 9}{x} d x} = 2 \ln{\left(x \right)}^{2} - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)}$$
적분 상수를 추가하세요:
$$\int{\frac{4 \ln{\left(2 x \right)} - 9}{x} d x} = 2 \ln{\left(x \right)}^{2} - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)}+C$$
정답
$$$\int \frac{4 \ln\left(2 x\right) - 9}{x}\, dx = \left(2 \ln^{2}\left(x\right) - 9 \ln\left(\left|{x}\right|\right) + 4 \ln\left(2\right) \ln\left(\left|{x}\right|\right)\right) + C$$$A