Integral of $$$\frac{4 \ln\left(2 x\right) - 9}{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{4 \ln\left(2 x\right) - 9}{x}\, dx$$$.
Solution
Expand the expression:
$${\color{red}{\int{\frac{4 \ln{\left(2 x \right)} - 9}{x} d x}}} = {\color{red}{\int{\left(\frac{4 \ln{\left(x \right)}}{x} - \frac{9}{x} + \frac{4 \ln{\left(2 \right)}}{x}\right)d x}}}$$
Integrate term by term:
$${\color{red}{\int{\left(\frac{4 \ln{\left(x \right)}}{x} - \frac{9}{x} + \frac{4 \ln{\left(2 \right)}}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{9}{x} d x} + \int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=9$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$\int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} - {\color{red}{\int{\frac{9}{x} d x}}} = \int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} - {\color{red}{\left(9 \int{\frac{1}{x} d x}\right)}}$$
The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} - 9 {\color{red}{\int{\frac{1}{x} d x}}} = \int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} - 9 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=4 \ln{\left(2 \right)}$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$- 9 \ln{\left(\left|{x}\right| \right)} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} + {\color{red}{\int{\frac{4 \ln{\left(2 \right)}}{x} d x}}} = - 9 \ln{\left(\left|{x}\right| \right)} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} + {\color{red}{\left(4 \ln{\left(2 \right)} \int{\frac{1}{x} d x}\right)}}$$
The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- 9 \ln{\left(\left|{x}\right| \right)} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} + 4 \ln{\left(2 \right)} {\color{red}{\int{\frac{1}{x} d x}}} = - 9 \ln{\left(\left|{x}\right| \right)} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} + 4 \ln{\left(2 \right)} {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=4$$$ and $$$f{\left(x \right)} = \frac{\ln{\left(x \right)}}{x}$$$:
$$- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + {\color{red}{\int{\frac{4 \ln{\left(x \right)}}{x} d x}}} = - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + {\color{red}{\left(4 \int{\frac{\ln{\left(x \right)}}{x} d x}\right)}}$$
Let $$$u=\ln{\left(x \right)}$$$.
Then $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (steps can be seen »), and we have that $$$\frac{dx}{x} = du$$$.
Thus,
$$- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\int{\frac{\ln{\left(x \right)}}{x} d x}}} = - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\int{u d u}}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\int{u d u}}}=- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$
Recall that $$$u=\ln{\left(x \right)}$$$:
$$- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 2 {\color{red}{u}}^{2} = - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 2 {\color{red}{\ln{\left(x \right)}}}^{2}$$
Therefore,
$$\int{\frac{4 \ln{\left(2 x \right)} - 9}{x} d x} = 2 \ln{\left(x \right)}^{2} - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{4 \ln{\left(2 x \right)} - 9}{x} d x} = 2 \ln{\left(x \right)}^{2} - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)}+C$$
Answer
$$$\int \frac{4 \ln\left(2 x\right) - 9}{x}\, dx = \left(2 \ln^{2}\left(x\right) - 9 \ln\left(\left|{x}\right|\right) + 4 \ln\left(2\right) \ln\left(\left|{x}\right|\right)\right) + C$$$A