Integral dari $$$\frac{4 \ln\left(2 x\right) - 9}{x}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{4 \ln\left(2 x\right) - 9}{x}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{4 \ln\left(2 x\right) - 9}{x}\, dx$$$.

Solusi

Expand the expression:

$${\color{red}{\int{\frac{4 \ln{\left(2 x \right)} - 9}{x} d x}}} = {\color{red}{\int{\left(\frac{4 \ln{\left(x \right)}}{x} - \frac{9}{x} + \frac{4 \ln{\left(2 \right)}}{x}\right)d x}}}$$

Integralkan suku demi suku:

$${\color{red}{\int{\left(\frac{4 \ln{\left(x \right)}}{x} - \frac{9}{x} + \frac{4 \ln{\left(2 \right)}}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{9}{x} d x} + \int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x}\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=9$$$ dan $$$f{\left(x \right)} = \frac{1}{x}$$$:

$$\int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} - {\color{red}{\int{\frac{9}{x} d x}}} = \int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} - {\color{red}{\left(9 \int{\frac{1}{x} d x}\right)}}$$

Integral dari $$$\frac{1}{x}$$$ adalah $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$\int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} - 9 {\color{red}{\int{\frac{1}{x} d x}}} = \int{\frac{4 \ln{\left(2 \right)}}{x} d x} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} - 9 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=4 \ln{\left(2 \right)}$$$ dan $$$f{\left(x \right)} = \frac{1}{x}$$$:

$$- 9 \ln{\left(\left|{x}\right| \right)} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} + {\color{red}{\int{\frac{4 \ln{\left(2 \right)}}{x} d x}}} = - 9 \ln{\left(\left|{x}\right| \right)} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} + {\color{red}{\left(4 \ln{\left(2 \right)} \int{\frac{1}{x} d x}\right)}}$$

Integral dari $$$\frac{1}{x}$$$ adalah $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$- 9 \ln{\left(\left|{x}\right| \right)} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} + 4 \ln{\left(2 \right)} {\color{red}{\int{\frac{1}{x} d x}}} = - 9 \ln{\left(\left|{x}\right| \right)} + \int{\frac{4 \ln{\left(x \right)}}{x} d x} + 4 \ln{\left(2 \right)} {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=4$$$ dan $$$f{\left(x \right)} = \frac{\ln{\left(x \right)}}{x}$$$:

$$- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + {\color{red}{\int{\frac{4 \ln{\left(x \right)}}{x} d x}}} = - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + {\color{red}{\left(4 \int{\frac{\ln{\left(x \right)}}{x} d x}\right)}}$$

Misalkan $$$u=\ln{\left(x \right)}$$$.

Kemudian $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{dx}{x} = du$$$.

Dengan demikian,

$$- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\int{\frac{\ln{\left(x \right)}}{x} d x}}} = - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\int{u d u}}}$$

Terapkan aturan pangkat $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:

$$- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\int{u d u}}}=- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 4 {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$

Ingat bahwa $$$u=\ln{\left(x \right)}$$$:

$$- 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 2 {\color{red}{u}}^{2} = - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)} + 2 {\color{red}{\ln{\left(x \right)}}}^{2}$$

Oleh karena itu,

$$\int{\frac{4 \ln{\left(2 x \right)} - 9}{x} d x} = 2 \ln{\left(x \right)}^{2} - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)}$$

Tambahkan konstanta integrasi:

$$\int{\frac{4 \ln{\left(2 x \right)} - 9}{x} d x} = 2 \ln{\left(x \right)}^{2} - 9 \ln{\left(\left|{x}\right| \right)} + 4 \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)}+C$$

Jawaban

$$$\int \frac{4 \ln\left(2 x\right) - 9}{x}\, dx = \left(2 \ln^{2}\left(x\right) - 9 \ln\left(\left|{x}\right|\right) + 4 \ln\left(2\right) \ln\left(\left|{x}\right|\right)\right) + C$$$A


Please try a new game Rotatly