$$$x$$$에 대한 $$$\frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4}$$$의 적분

계산기는 $$$x$$$에 대한 $$$\frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4}$$$의 적분/원시함수를 단계별로 찾아줍니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4}\, dx$$$을(를) 구하시오.

풀이

입력이 다음과 같이 다시 쓰입니다: $$$\int{\frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4} d x}=\int{\frac{\sqrt{57} int_{0}^{4} x^{\frac{7}{2}}}{4} d x}$$$.

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{\sqrt{57} int_{0}^{4}}{4}$$$$$$f{\left(x \right)} = x^{\frac{7}{2}}$$$에 적용하세요:

$${\color{red}{\int{\frac{\sqrt{57} int_{0}^{4} x^{\frac{7}{2}}}{4} d x}}} = {\color{red}{\left(\frac{\sqrt{57} int_{0}^{4} \int{x^{\frac{7}{2}} d x}}{4}\right)}}$$

멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=\frac{7}{2}$$$에 적용합니다:

$$\frac{\sqrt{57} int_{0}^{4} {\color{red}{\int{x^{\frac{7}{2}} d x}}}}{4}=\frac{\sqrt{57} int_{0}^{4} {\color{red}{\frac{x^{1 + \frac{7}{2}}}{1 + \frac{7}{2}}}}}{4}=\frac{\sqrt{57} int_{0}^{4} {\color{red}{\left(\frac{2 x^{\frac{9}{2}}}{9}\right)}}}{4}$$

따라서,

$$\int{\frac{\sqrt{57} int_{0}^{4} x^{\frac{7}{2}}}{4} d x} = \frac{\sqrt{57} int_{0}^{4} x^{\frac{9}{2}}}{18}$$

적분 상수를 추가하세요:

$$\int{\frac{\sqrt{57} int_{0}^{4} x^{\frac{7}{2}}}{4} d x} = \frac{\sqrt{57} int_{0}^{4} x^{\frac{9}{2}}}{18}+C$$

정답

$$$\int \frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4}\, dx = \frac{\sqrt{57} int_{0}^{4} x^{\frac{9}{2}}}{18} + C$$$A


Please try a new game Rotatly