Integraali $$$\frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4}$$$:stä muuttujan $$$x$$$ suhteen

Laskin löytää funktion $$$\frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4}$$$ integraalin/kantafunktion muuttujan $$$x$$$ suhteen ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4}\, dx$$$.

Ratkaisu

Syöte kirjoitetaan muotoon: $$$\int{\frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4} d x}=\int{\frac{\sqrt{57} int_{0}^{4} x^{\frac{7}{2}}}{4} d x}$$$.

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{\sqrt{57} int_{0}^{4}}{4}$$$ ja $$$f{\left(x \right)} = x^{\frac{7}{2}}$$$:

$${\color{red}{\int{\frac{\sqrt{57} int_{0}^{4} x^{\frac{7}{2}}}{4} d x}}} = {\color{red}{\left(\frac{\sqrt{57} int_{0}^{4} \int{x^{\frac{7}{2}} d x}}{4}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=\frac{7}{2}$$$:

$$\frac{\sqrt{57} int_{0}^{4} {\color{red}{\int{x^{\frac{7}{2}} d x}}}}{4}=\frac{\sqrt{57} int_{0}^{4} {\color{red}{\frac{x^{1 + \frac{7}{2}}}{1 + \frac{7}{2}}}}}{4}=\frac{\sqrt{57} int_{0}^{4} {\color{red}{\left(\frac{2 x^{\frac{9}{2}}}{9}\right)}}}{4}$$

Näin ollen,

$$\int{\frac{\sqrt{57} int_{0}^{4} x^{\frac{7}{2}}}{4} d x} = \frac{\sqrt{57} int_{0}^{4} x^{\frac{9}{2}}}{18}$$

Lisää integrointivakio:

$$\int{\frac{\sqrt{57} int_{0}^{4} x^{\frac{7}{2}}}{4} d x} = \frac{\sqrt{57} int_{0}^{4} x^{\frac{9}{2}}}{18}+C$$

Vastaus

$$$\int \frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4}\, dx = \frac{\sqrt{57} int_{0}^{4} x^{\frac{9}{2}}}{18} + C$$$A


Please try a new game Rotatly