$$$x$$$ değişkenine göre $$$\frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$\frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4}\, dx$$$.

Çözüm

Girdi yeniden yazıldı: $$$\int{\frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4} d x}=\int{\frac{\sqrt{57} int_{0}^{4} x^{\frac{7}{2}}}{4} d x}$$$.

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{\sqrt{57} int_{0}^{4}}{4}$$$ ve $$$f{\left(x \right)} = x^{\frac{7}{2}}$$$ ile uygula:

$${\color{red}{\int{\frac{\sqrt{57} int_{0}^{4} x^{\frac{7}{2}}}{4} d x}}} = {\color{red}{\left(\frac{\sqrt{57} int_{0}^{4} \int{x^{\frac{7}{2}} d x}}{4}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=\frac{7}{2}$$$ ile uygulayın:

$$\frac{\sqrt{57} int_{0}^{4} {\color{red}{\int{x^{\frac{7}{2}} d x}}}}{4}=\frac{\sqrt{57} int_{0}^{4} {\color{red}{\frac{x^{1 + \frac{7}{2}}}{1 + \frac{7}{2}}}}}{4}=\frac{\sqrt{57} int_{0}^{4} {\color{red}{\left(\frac{2 x^{\frac{9}{2}}}{9}\right)}}}{4}$$

Dolayısıyla,

$$\int{\frac{\sqrt{57} int_{0}^{4} x^{\frac{7}{2}}}{4} d x} = \frac{\sqrt{57} int_{0}^{4} x^{\frac{9}{2}}}{18}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\sqrt{57} int_{0}^{4} x^{\frac{7}{2}}}{4} d x} = \frac{\sqrt{57} int_{0}^{4} x^{\frac{9}{2}}}{18}+C$$

Cevap

$$$\int \frac{\sqrt{57} int_{0}^{4} x^{2} \sqrt{x^{3}}}{4}\, dx = \frac{\sqrt{57} int_{0}^{4} x^{\frac{9}{2}}}{18} + C$$$A


Please try a new game Rotatly