$$$x$$$에 대한 $$$- 30229 x^{6} y^{9} z^{5}$$$의 적분
사용자 입력
$$$\int \left(- 30229 x^{6} y^{9} z^{5}\right)\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=- 30229 y^{9} z^{5}$$$와 $$$f{\left(x \right)} = x^{6}$$$에 적용하세요:
$${\color{red}{\int{\left(- 30229 x^{6} y^{9} z^{5}\right)d x}}} = {\color{red}{\left(- 30229 y^{9} z^{5} \int{x^{6} d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=6$$$에 적용합니다:
$$- 30229 y^{9} z^{5} {\color{red}{\int{x^{6} d x}}}=- 30229 y^{9} z^{5} {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=- 30229 y^{9} z^{5} {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$
따라서,
$$\int{\left(- 30229 x^{6} y^{9} z^{5}\right)d x} = - \frac{30229 x^{7} y^{9} z^{5}}{7}$$
적분 상수를 추가하세요:
$$\int{\left(- 30229 x^{6} y^{9} z^{5}\right)d x} = - \frac{30229 x^{7} y^{9} z^{5}}{7}+C$$
정답
$$$\int \left(- 30229 x^{6} y^{9} z^{5}\right)\, dx = - \frac{30229 x^{7} y^{9} z^{5}}{7} + C$$$A