$$$x$$$ değişkenine göre $$$- 30229 x^{6} y^{9} z^{5}$$$ fonksiyonunun integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(- 30229 x^{6} y^{9} z^{5}\right)\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=- 30229 y^{9} z^{5}$$$ ve $$$f{\left(x \right)} = x^{6}$$$ ile uygula:
$${\color{red}{\int{\left(- 30229 x^{6} y^{9} z^{5}\right)d x}}} = {\color{red}{\left(- 30229 y^{9} z^{5} \int{x^{6} d x}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=6$$$ ile uygulayın:
$$- 30229 y^{9} z^{5} {\color{red}{\int{x^{6} d x}}}=- 30229 y^{9} z^{5} {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=- 30229 y^{9} z^{5} {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$
Dolayısıyla,
$$\int{\left(- 30229 x^{6} y^{9} z^{5}\right)d x} = - \frac{30229 x^{7} y^{9} z^{5}}{7}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(- 30229 x^{6} y^{9} z^{5}\right)d x} = - \frac{30229 x^{7} y^{9} z^{5}}{7}+C$$
Cevap
$$$\int \left(- 30229 x^{6} y^{9} z^{5}\right)\, dx = - \frac{30229 x^{7} y^{9} z^{5}}{7} + C$$$A