$$$- 30229 x^{6} y^{9} z^{5}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \left(- 30229 x^{6} y^{9} z^{5}\right)\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=- 30229 y^{9} z^{5}$$$ 與 $$$f{\left(x \right)} = x^{6}$$$:
$${\color{red}{\int{\left(- 30229 x^{6} y^{9} z^{5}\right)d x}}} = {\color{red}{\left(- 30229 y^{9} z^{5} \int{x^{6} d x}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=6$$$:
$$- 30229 y^{9} z^{5} {\color{red}{\int{x^{6} d x}}}=- 30229 y^{9} z^{5} {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=- 30229 y^{9} z^{5} {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$
因此,
$$\int{\left(- 30229 x^{6} y^{9} z^{5}\right)d x} = - \frac{30229 x^{7} y^{9} z^{5}}{7}$$
加上積分常數:
$$\int{\left(- 30229 x^{6} y^{9} z^{5}\right)d x} = - \frac{30229 x^{7} y^{9} z^{5}}{7}+C$$
答案
$$$\int \left(- 30229 x^{6} y^{9} z^{5}\right)\, dx = - \frac{30229 x^{7} y^{9} z^{5}}{7} + C$$$A