$$$x$$$에 대한 $$$\frac{y}{x^{2} - 1}$$$의 적분
사용자 입력
$$$\int \frac{y}{x^{2} - 1}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=y$$$와 $$$f{\left(x \right)} = \frac{1}{x^{2} - 1}$$$에 적용하세요:
$${\color{red}{\int{\frac{y}{x^{2} - 1} d x}}} = {\color{red}{y \int{\frac{1}{x^{2} - 1} d x}}}$$
부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):
$$y {\color{red}{\int{\frac{1}{x^{2} - 1} d x}}} = y {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$
각 항별로 적분하십시오:
$$y {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}} = y {\color{red}{\left(\int{\frac{1}{2 \left(x - 1\right)} d x} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = \frac{1}{x - 1}$$$에 적용하세요:
$$y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}}\right) = y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}\right)$$
$$$u=x - 1$$$라 하자.
그러면 $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{2}\right) = y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}\right)$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}\right) = y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}\right)$$
다음 $$$u=x - 1$$$을 기억하라:
$$y \left(\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right) = y \left(\frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right)$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = \frac{1}{x + 1}$$$에 적용하세요:
$$y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}}\right) = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}\right)$$
$$$u=x + 1$$$라 하자.
그러면 $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.
따라서,
$$y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2}\right) = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}\right)$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}\right) = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}\right)$$
다음 $$$u=x + 1$$$을 기억하라:
$$y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2}\right) = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2}\right)$$
따라서,
$$\int{\frac{y}{x^{2} - 1} d x} = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}\right)$$
간단히 하시오:
$$\int{\frac{y}{x^{2} - 1} d x} = \frac{y \left(\ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{x + 1}\right| \right)}\right)}{2}$$
적분 상수를 추가하세요:
$$\int{\frac{y}{x^{2} - 1} d x} = \frac{y \left(\ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{x + 1}\right| \right)}\right)}{2}+C$$
정답
$$$\int \frac{y}{x^{2} - 1}\, dx = \frac{y \left(\ln\left(\left|{x - 1}\right|\right) - \ln\left(\left|{x + 1}\right|\right)\right)}{2} + C$$$A