Integraali $$$\frac{y}{x^{2} - 1}$$$:stä muuttujan $$$x$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{y}{x^{2} - 1}\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=y$$$ ja $$$f{\left(x \right)} = \frac{1}{x^{2} - 1}$$$:
$${\color{red}{\int{\frac{y}{x^{2} - 1} d x}}} = {\color{red}{y \int{\frac{1}{x^{2} - 1} d x}}}$$
Suorita osamurtokehittely (vaiheet voidaan nähdä kohdassa »):
$$y {\color{red}{\int{\frac{1}{x^{2} - 1} d x}}} = y {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$
Integroi termi kerrallaan:
$$y {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}} = y {\color{red}{\left(\int{\frac{1}{2 \left(x - 1\right)} d x} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = \frac{1}{x - 1}$$$:
$$y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}}\right) = y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}\right)$$
Olkoon $$$u=x - 1$$$.
Tällöin $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.
Integraali voidaan kirjoittaa muotoon
$$y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{2}\right) = y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}\right)$$
Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}\right) = y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}\right)$$
Muista, että $$$u=x - 1$$$:
$$y \left(\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right) = y \left(\frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right)$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = \frac{1}{x + 1}$$$:
$$y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}}\right) = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}\right)$$
Olkoon $$$u=x + 1$$$.
Tällöin $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.
Integraali voidaan kirjoittaa muotoon
$$y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2}\right) = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}\right)$$
Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}\right) = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}\right)$$
Muista, että $$$u=x + 1$$$:
$$y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2}\right) = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2}\right)$$
Näin ollen,
$$\int{\frac{y}{x^{2} - 1} d x} = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}\right)$$
Sievennä:
$$\int{\frac{y}{x^{2} - 1} d x} = \frac{y \left(\ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{x + 1}\right| \right)}\right)}{2}$$
Lisää integrointivakio:
$$\int{\frac{y}{x^{2} - 1} d x} = \frac{y \left(\ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{x + 1}\right| \right)}\right)}{2}+C$$
Vastaus
$$$\int \frac{y}{x^{2} - 1}\, dx = \frac{y \left(\ln\left(\left|{x - 1}\right|\right) - \ln\left(\left|{x + 1}\right|\right)\right)}{2} + C$$$A