Integral of $$$\frac{y}{x^{2} - 1}$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$\frac{y}{x^{2} - 1}$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{y}{x^{2} - 1}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=y$$$ and $$$f{\left(x \right)} = \frac{1}{x^{2} - 1}$$$:

$${\color{red}{\int{\frac{y}{x^{2} - 1} d x}}} = {\color{red}{y \int{\frac{1}{x^{2} - 1} d x}}}$$

Perform partial fraction decomposition (steps can be seen »):

$$y {\color{red}{\int{\frac{1}{x^{2} - 1} d x}}} = y {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$

Integrate term by term:

$$y {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}} = y {\color{red}{\left(\int{\frac{1}{2 \left(x - 1\right)} d x} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = \frac{1}{x - 1}$$$:

$$y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}}\right) = y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}\right)$$

Let $$$u=x - 1$$$.

Then $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.

So,

$$y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{2}\right) = y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}\right)$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}\right) = y \left(- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}\right)$$

Recall that $$$u=x - 1$$$:

$$y \left(\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right) = y \left(\frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right)$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = \frac{1}{x + 1}$$$:

$$y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}}\right) = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}\right)$$

Let $$$u=x + 1$$$.

Then $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.

Thus,

$$y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2}\right) = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}\right)$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}\right) = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}\right)$$

Recall that $$$u=x + 1$$$:

$$y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2}\right) = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2}\right)$$

Therefore,

$$\int{\frac{y}{x^{2} - 1} d x} = y \left(\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}\right)$$

Simplify:

$$\int{\frac{y}{x^{2} - 1} d x} = \frac{y \left(\ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{x + 1}\right| \right)}\right)}{2}$$

Add the constant of integration:

$$\int{\frac{y}{x^{2} - 1} d x} = \frac{y \left(\ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{x + 1}\right| \right)}\right)}{2}+C$$

Answer

$$$\int \frac{y}{x^{2} - 1}\, dx = \frac{y \left(\ln\left(\left|{x - 1}\right|\right) - \ln\left(\left|{x + 1}\right|\right)\right)}{2} + C$$$A


Please try a new game Rotatly