$$$x^{\frac{3}{2}} + 2$$$의 적분
사용자 입력
$$$\int \left(x^{\frac{3}{2}} + 2\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(x^{\frac{3}{2}} + 2\right)d x}}} = {\color{red}{\left(\int{2 d x} + \int{x^{\frac{3}{2}} d x}\right)}}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=2$$$에 적용하십시오:
$$\int{x^{\frac{3}{2}} d x} + {\color{red}{\int{2 d x}}} = \int{x^{\frac{3}{2}} d x} + {\color{red}{\left(2 x\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=\frac{3}{2}$$$에 적용합니다:
$$2 x + {\color{red}{\int{x^{\frac{3}{2}} d x}}}=2 x + {\color{red}{\frac{x^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}=2 x + {\color{red}{\left(\frac{2 x^{\frac{5}{2}}}{5}\right)}}$$
따라서,
$$\int{\left(x^{\frac{3}{2}} + 2\right)d x} = \frac{2 x^{\frac{5}{2}}}{5} + 2 x$$
적분 상수를 추가하세요:
$$\int{\left(x^{\frac{3}{2}} + 2\right)d x} = \frac{2 x^{\frac{5}{2}}}{5} + 2 x+C$$
정답
$$$\int \left(x^{\frac{3}{2}} + 2\right)\, dx = \left(\frac{2 x^{\frac{5}{2}}}{5} + 2 x\right) + C$$$A