Integralen av $$$x^{\frac{3}{2}} + 2$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(x^{\frac{3}{2}} + 2\right)\, dx$$$.
Lösning
Integrera termvis:
$${\color{red}{\int{\left(x^{\frac{3}{2}} + 2\right)d x}}} = {\color{red}{\left(\int{2 d x} + \int{x^{\frac{3}{2}} d x}\right)}}$$
Tillämpa konstantregeln $$$\int c\, dx = c x$$$ med $$$c=2$$$:
$$\int{x^{\frac{3}{2}} d x} + {\color{red}{\int{2 d x}}} = \int{x^{\frac{3}{2}} d x} + {\color{red}{\left(2 x\right)}}$$
Tillämpa potensregeln $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=\frac{3}{2}$$$:
$$2 x + {\color{red}{\int{x^{\frac{3}{2}} d x}}}=2 x + {\color{red}{\frac{x^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}=2 x + {\color{red}{\left(\frac{2 x^{\frac{5}{2}}}{5}\right)}}$$
Alltså,
$$\int{\left(x^{\frac{3}{2}} + 2\right)d x} = \frac{2 x^{\frac{5}{2}}}{5} + 2 x$$
Lägg till integrationskonstanten:
$$\int{\left(x^{\frac{3}{2}} + 2\right)d x} = \frac{2 x^{\frac{5}{2}}}{5} + 2 x+C$$
Svar
$$$\int \left(x^{\frac{3}{2}} + 2\right)\, dx = \left(\frac{2 x^{\frac{5}{2}}}{5} + 2 x\right) + C$$$A