$$$\tan^{2}{\left(x \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\tan^{2}{\left(x \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \tan^{2}{\left(x \right)}\, dx$$$을(를) 구하시오.

풀이

$$$u=\tan{\left(x \right)}$$$라 하자.

그러면 $$$x=\operatorname{atan}{\left(u \right)}$$$$$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (단계는 »에서 볼 수 있습니다).

따라서,

$${\color{red}{\int{\tan^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}$$

분수식을 다시 쓰고 분리하세요:

$${\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

각 항별로 적분하십시오:

$${\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

상수 법칙 $$$\int c\, du = c u$$$$$$c=1$$$에 적용하십시오:

$$- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}$$

$$$\frac{1}{u^{2} + 1}$$$의 적분은 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = u - {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

다음 $$$u=\tan{\left(x \right)}$$$을 기억하라:

$$- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}} = - \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} + {\color{red}{\tan{\left(x \right)}}}$$

따라서,

$$\int{\tan^{2}{\left(x \right)} d x} = \tan{\left(x \right)} - \operatorname{atan}{\left(\tan{\left(x \right)} \right)}$$

간단히 하시오:

$$\int{\tan^{2}{\left(x \right)} d x} = - x + \tan{\left(x \right)}$$

적분 상수를 추가하세요:

$$\int{\tan^{2}{\left(x \right)} d x} = - x + \tan{\left(x \right)}+C$$

정답

$$$\int \tan^{2}{\left(x \right)}\, dx = \left(- x + \tan{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly