$$$\tan^{2}{\left(x \right)}$$$ 的积分

该计算器将求出$$$\tan^{2}{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \tan^{2}{\left(x \right)}\, dx$$$

解答

$$$u=\tan{\left(x \right)}$$$

$$$x=\operatorname{atan}{\left(u \right)}$$$$$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$(步骤见»)。

因此,

$${\color{red}{\int{\tan^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}$$

改写并拆分该分式:

$${\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

逐项积分:

$${\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$

$$- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}$$

$$$\frac{1}{u^{2} + 1}$$$ 的积分为 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = u - {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

回忆一下 $$$u=\tan{\left(x \right)}$$$:

$$- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}} = - \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} + {\color{red}{\tan{\left(x \right)}}}$$

因此,

$$\int{\tan^{2}{\left(x \right)} d x} = \tan{\left(x \right)} - \operatorname{atan}{\left(\tan{\left(x \right)} \right)}$$

化简:

$$\int{\tan^{2}{\left(x \right)} d x} = - x + \tan{\left(x \right)}$$

加上积分常数:

$$\int{\tan^{2}{\left(x \right)} d x} = - x + \tan{\left(x \right)}+C$$

答案

$$$\int \tan^{2}{\left(x \right)}\, dx = \left(- x + \tan{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly