$$$\tan^{2}{\left(x \right)}$$$ 的積分

此計算器將求出 $$$\tan^{2}{\left(x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \tan^{2}{\left(x \right)}\, dx$$$

解答

$$$u=\tan{\left(x \right)}$$$

$$$x=\operatorname{atan}{\left(u \right)}$$$$$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$(步驟見»)。

所以,

$${\color{red}{\int{\tan^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}$$

重寫並拆分分式:

$${\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

逐項積分:

$${\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$

$$- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}$$

$$$\frac{1}{u^{2} + 1}$$$ 的積分是 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$

$$u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = u - {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

回顧一下 $$$u=\tan{\left(x \right)}$$$

$$- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}} = - \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} + {\color{red}{\tan{\left(x \right)}}}$$

因此,

$$\int{\tan^{2}{\left(x \right)} d x} = \tan{\left(x \right)} - \operatorname{atan}{\left(\tan{\left(x \right)} \right)}$$

化簡:

$$\int{\tan^{2}{\left(x \right)} d x} = - x + \tan{\left(x \right)}$$

加上積分常數:

$$\int{\tan^{2}{\left(x \right)} d x} = - x + \tan{\left(x \right)}+C$$

答案

$$$\int \tan^{2}{\left(x \right)}\, dx = \left(- x + \tan{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly