$$$\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)}\, dx$$$을(를) 구하시오.
풀이
공식 $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$에 $$$\alpha=x$$$와 $$$\beta=2 x$$$를 대입하여 $$$\sin\left(x \right)\sin\left(2 x \right)$$$을(를) 다시 쓰십시오.:
$${\color{red}{\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \tan{\left(1 \right)} d x}}}$$
식을 전개하시오:
$${\color{red}{\int{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \tan{\left(1 \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\cos{\left(3 x \right)} \tan{\left(1 \right)}}{2}\right)d x}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = \cos{\left(x \right)} \tan{\left(1 \right)} - \cos{\left(3 x \right)} \tan{\left(1 \right)}$$$에 적용하세요:
$${\color{red}{\int{\left(\frac{\cos{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\cos{\left(3 x \right)} \tan{\left(1 \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(x \right)} \tan{\left(1 \right)} - \cos{\left(3 x \right)} \tan{\left(1 \right)}\right)d x}}{2}\right)}}$$
각 항별로 적분하십시오:
$$\frac{{\color{red}{\int{\left(\cos{\left(x \right)} \tan{\left(1 \right)} - \cos{\left(3 x \right)} \tan{\left(1 \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\cos{\left(x \right)} \tan{\left(1 \right)} d x} - \int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}\right)}}}{2}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\tan{\left(1 \right)}$$$와 $$$f{\left(x \right)} = \cos{\left(x \right)}$$$에 적용하세요:
$$- \frac{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(x \right)} \tan{\left(1 \right)} d x}}}}{2} = - \frac{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}{2} + \frac{{\color{red}{\tan{\left(1 \right)} \int{\cos{\left(x \right)} d x}}}}{2}$$
코사인의 적분은 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$- \frac{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}{2} + \frac{\tan{\left(1 \right)} {\color{red}{\int{\cos{\left(x \right)} d x}}}}{2} = - \frac{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}{2} + \frac{\tan{\left(1 \right)} {\color{red}{\sin{\left(x \right)}}}}{2}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\tan{\left(1 \right)}$$$와 $$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$에 적용하세요:
$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{{\color{red}{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}}}{2} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{{\color{red}{\tan{\left(1 \right)} \int{\cos{\left(3 x \right)} d x}}}}{2}$$
$$$u=3 x$$$라 하자.
그러면 $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{3}$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{2} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{2}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{3}$$$와 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:
$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{2} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{2}$$
코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\int{\cos{\left(u \right)} d u}}}}{6} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\sin{\left(u \right)}}}}{6}$$
다음 $$$u=3 x$$$을 기억하라:
$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} \sin{\left({\color{red}{u}} \right)}}{6} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} \sin{\left({\color{red}{\left(3 x\right)}} \right)}}{6}$$
따라서,
$$\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)} d x} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\sin{\left(3 x \right)} \tan{\left(1 \right)}}{6}$$
간단히 하시오:
$$\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)} d x} = \frac{\left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \tan{\left(1 \right)}}{6}$$
적분 상수를 추가하세요:
$$\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)} d x} = \frac{\left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \tan{\left(1 \right)}}{6}+C$$
정답
$$$\int \sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)}\, dx = \frac{\left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \tan{\left(1 \right)}}{6} + C$$$A