Integrale di $$$\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)}\, dx$$$.
Soluzione
Riscrivi $$$\sin\left(x \right)\sin\left(2 x \right)$$$ utilizzando la formula $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ con $$$\alpha=x$$$ e $$$\beta=2 x$$$:
$${\color{red}{\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \tan{\left(1 \right)} d x}}}$$
Sviluppa l'espressione:
$${\color{red}{\int{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \tan{\left(1 \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\cos{\left(3 x \right)} \tan{\left(1 \right)}}{2}\right)d x}}}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \cos{\left(x \right)} \tan{\left(1 \right)} - \cos{\left(3 x \right)} \tan{\left(1 \right)}$$$:
$${\color{red}{\int{\left(\frac{\cos{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\cos{\left(3 x \right)} \tan{\left(1 \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(x \right)} \tan{\left(1 \right)} - \cos{\left(3 x \right)} \tan{\left(1 \right)}\right)d x}}{2}\right)}}$$
Integra termine per termine:
$$\frac{{\color{red}{\int{\left(\cos{\left(x \right)} \tan{\left(1 \right)} - \cos{\left(3 x \right)} \tan{\left(1 \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\cos{\left(x \right)} \tan{\left(1 \right)} d x} - \int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}\right)}}}{2}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\tan{\left(1 \right)}$$$ e $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$$- \frac{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(x \right)} \tan{\left(1 \right)} d x}}}}{2} = - \frac{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}{2} + \frac{{\color{red}{\tan{\left(1 \right)} \int{\cos{\left(x \right)} d x}}}}{2}$$
L'integrale del coseno è $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$- \frac{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}{2} + \frac{\tan{\left(1 \right)} {\color{red}{\int{\cos{\left(x \right)} d x}}}}{2} = - \frac{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}{2} + \frac{\tan{\left(1 \right)} {\color{red}{\sin{\left(x \right)}}}}{2}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\tan{\left(1 \right)}$$$ e $$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$:
$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{{\color{red}{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}}}{2} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{{\color{red}{\tan{\left(1 \right)} \int{\cos{\left(3 x \right)} d x}}}}{2}$$
Sia $$$u=3 x$$$.
Quindi $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{3}$$$.
L'integrale può essere riscritto come
$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{2} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{2}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{3}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{2} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{2}$$
L'integrale del coseno è $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\int{\cos{\left(u \right)} d u}}}}{6} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\sin{\left(u \right)}}}}{6}$$
Ricordiamo che $$$u=3 x$$$:
$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} \sin{\left({\color{red}{u}} \right)}}{6} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} \sin{\left({\color{red}{\left(3 x\right)}} \right)}}{6}$$
Pertanto,
$$\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)} d x} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\sin{\left(3 x \right)} \tan{\left(1 \right)}}{6}$$
Semplifica:
$$\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)} d x} = \frac{\left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \tan{\left(1 \right)}}{6}$$
Aggiungi la costante di integrazione:
$$\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)} d x} = \frac{\left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \tan{\left(1 \right)}}{6}+C$$
Risposta
$$$\int \sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)}\, dx = \frac{\left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \tan{\left(1 \right)}}{6} + C$$$A