Funktion $$$\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)}$$$ integraali

Laskin löytää funktion $$$\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)}\, dx$$$.

Trigonometriset funktiot odottavat, että argumentti on radiaaneina. Jos haluat antaa argumentin asteina, kerro se luvulla pi/180, esim. kirjoita 45° muodossa 45*pi/180, tai käytä vastaavaa funktiota lisäämällä 'd', esim. kirjoita sin(45°) muodossa sind(45).

Ratkaisu

Kirjoita $$$\sin\left(x \right)\sin\left(2 x \right)$$$ uudelleen kaavaa $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ käyttäen, kun $$$\alpha=x$$$ ja $$$\beta=2 x$$$:

$${\color{red}{\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \tan{\left(1 \right)} d x}}}$$

Laajenna lauseke:

$${\color{red}{\int{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \tan{\left(1 \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\cos{\left(3 x \right)} \tan{\left(1 \right)}}{2}\right)d x}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = \cos{\left(x \right)} \tan{\left(1 \right)} - \cos{\left(3 x \right)} \tan{\left(1 \right)}$$$:

$${\color{red}{\int{\left(\frac{\cos{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\cos{\left(3 x \right)} \tan{\left(1 \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(x \right)} \tan{\left(1 \right)} - \cos{\left(3 x \right)} \tan{\left(1 \right)}\right)d x}}{2}\right)}}$$

Integroi termi kerrallaan:

$$\frac{{\color{red}{\int{\left(\cos{\left(x \right)} \tan{\left(1 \right)} - \cos{\left(3 x \right)} \tan{\left(1 \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\cos{\left(x \right)} \tan{\left(1 \right)} d x} - \int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}\right)}}}{2}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\tan{\left(1 \right)}$$$ ja $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:

$$- \frac{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(x \right)} \tan{\left(1 \right)} d x}}}}{2} = - \frac{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}{2} + \frac{{\color{red}{\tan{\left(1 \right)} \int{\cos{\left(x \right)} d x}}}}{2}$$

Kosinin integraali on $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$- \frac{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}{2} + \frac{\tan{\left(1 \right)} {\color{red}{\int{\cos{\left(x \right)} d x}}}}{2} = - \frac{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}{2} + \frac{\tan{\left(1 \right)} {\color{red}{\sin{\left(x \right)}}}}{2}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\tan{\left(1 \right)}$$$ ja $$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$:

$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{{\color{red}{\int{\cos{\left(3 x \right)} \tan{\left(1 \right)} d x}}}}{2} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{{\color{red}{\tan{\left(1 \right)} \int{\cos{\left(3 x \right)} d x}}}}{2}$$

Olkoon $$$u=3 x$$$.

Tällöin $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{3}$$$.

Integraali voidaan kirjoittaa muotoon

$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{2} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{2}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{3}$$$ ja $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{2} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{2}$$

Kosinin integraali on $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\int{\cos{\left(u \right)} d u}}}}{6} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} {\color{red}{\sin{\left(u \right)}}}}{6}$$

Muista, että $$$u=3 x$$$:

$$\frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} \sin{\left({\color{red}{u}} \right)}}{6} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\tan{\left(1 \right)} \sin{\left({\color{red}{\left(3 x\right)}} \right)}}{6}$$

Näin ollen,

$$\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)} d x} = \frac{\sin{\left(x \right)} \tan{\left(1 \right)}}{2} - \frac{\sin{\left(3 x \right)} \tan{\left(1 \right)}}{6}$$

Sievennä:

$$\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)} d x} = \frac{\left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \tan{\left(1 \right)}}{6}$$

Lisää integrointivakio:

$$\int{\sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)} d x} = \frac{\left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \tan{\left(1 \right)}}{6}+C$$

Vastaus

$$$\int \sin{\left(x \right)} \sin{\left(2 x \right)} \tan{\left(1 \right)}\, dx = \frac{\left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \tan{\left(1 \right)}}{6} + C$$$A


Please try a new game Rotatly