$$$\operatorname{sech}{\left(x \right)}$$$의 적분
사용자 입력
$$$\int \operatorname{sech}{\left(x \right)}\, dx$$$을(를) 구하시오.
풀이
지수 $$$\operatorname{sech}\left(x\right)=\frac{2}{e^{\left(x\right)}+e^{-\left(x\right)}}$$$를 사용하여 쌍곡시컨트를 다시 쓰십시오:
$${\color{red}{\int{\operatorname{sech}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{2}{e^{x} + e^{- x}} d x}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=2$$$와 $$$f{\left(x \right)} = \frac{1}{e^{x} + e^{- x}}$$$에 적용하세요:
$${\color{red}{\int{\frac{2}{e^{x} + e^{- x}} d x}}} = {\color{red}{\left(2 \int{\frac{1}{e^{x} + e^{- x}} d x}\right)}}$$
Simplify:
$$2 {\color{red}{\int{\frac{1}{e^{x} + e^{- x}} d x}}} = 2 {\color{red}{\int{\frac{e^{x}}{e^{2 x} + 1} d x}}}$$
$$$u=e^{x}$$$라 하자.
그러면 $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$e^{x} dx = du$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$2 {\color{red}{\int{\frac{e^{x}}{e^{2 x} + 1} d x}}} = 2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}$$
$$$\frac{1}{u^{2} + 1}$$$의 적분은 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = 2 {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
다음 $$$u=e^{x}$$$을 기억하라:
$$2 \operatorname{atan}{\left({\color{red}{u}} \right)} = 2 \operatorname{atan}{\left({\color{red}{e^{x}}} \right)}$$
따라서,
$$\int{\operatorname{sech}{\left(x \right)} d x} = 2 \operatorname{atan}{\left(e^{x} \right)}$$
적분 상수를 추가하세요:
$$\int{\operatorname{sech}{\left(x \right)} d x} = 2 \operatorname{atan}{\left(e^{x} \right)}+C$$
정답
$$$\int \operatorname{sech}{\left(x \right)}\, dx = 2 \operatorname{atan}{\left(e^{x} \right)} + C$$$A