$$$\operatorname{sech}{\left(x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\operatorname{sech}{\left(x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \operatorname{sech}{\left(x \right)}\, dx$$$.

Çözüm

Hiperbolik sekantı $$$\operatorname{sech}\left(x\right)=\frac{2}{e^{\left(x\right)}+e^{-\left(x\right)}}$$$ üssünü kullanarak yeniden yazın:

$${\color{red}{\int{\operatorname{sech}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{2}{e^{x} + e^{- x}} d x}}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=2$$$ ve $$$f{\left(x \right)} = \frac{1}{e^{x} + e^{- x}}$$$ ile uygula:

$${\color{red}{\int{\frac{2}{e^{x} + e^{- x}} d x}}} = {\color{red}{\left(2 \int{\frac{1}{e^{x} + e^{- x}} d x}\right)}}$$

Simplify:

$$2 {\color{red}{\int{\frac{1}{e^{x} + e^{- x}} d x}}} = 2 {\color{red}{\int{\frac{e^{x}}{e^{2 x} + 1} d x}}}$$

$$$u=e^{x}$$$ olsun.

Böylece $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (adımlar » görülebilir) ve $$$e^{x} dx = du$$$ elde ederiz.

Dolayısıyla,

$$2 {\color{red}{\int{\frac{e^{x}}{e^{2 x} + 1} d x}}} = 2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}$$

$$$\frac{1}{u^{2} + 1}$$$'nin integrali $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = 2 {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Hatırlayın ki $$$u=e^{x}$$$:

$$2 \operatorname{atan}{\left({\color{red}{u}} \right)} = 2 \operatorname{atan}{\left({\color{red}{e^{x}}} \right)}$$

Dolayısıyla,

$$\int{\operatorname{sech}{\left(x \right)} d x} = 2 \operatorname{atan}{\left(e^{x} \right)}$$

İntegrasyon sabitini ekleyin:

$$\int{\operatorname{sech}{\left(x \right)} d x} = 2 \operatorname{atan}{\left(e^{x} \right)}+C$$

Cevap

$$$\int \operatorname{sech}{\left(x \right)}\, dx = 2 \operatorname{atan}{\left(e^{x} \right)} + C$$$A


Please try a new game Rotatly