Integrale di $$$\operatorname{sech}{\left(x \right)}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \operatorname{sech}{\left(x \right)}\, dx$$$.
Soluzione
Riescrivi la secante iperbolica usando la funzione esponenziale $$$\operatorname{sech}\left(x\right)=\frac{2}{e^{\left(x\right)}+e^{-\left(x\right)}}$$$:
$${\color{red}{\int{\operatorname{sech}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{2}{e^{x} + e^{- x}} d x}}}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ e $$$f{\left(x \right)} = \frac{1}{e^{x} + e^{- x}}$$$:
$${\color{red}{\int{\frac{2}{e^{x} + e^{- x}} d x}}} = {\color{red}{\left(2 \int{\frac{1}{e^{x} + e^{- x}} d x}\right)}}$$
Simplify:
$$2 {\color{red}{\int{\frac{1}{e^{x} + e^{- x}} d x}}} = 2 {\color{red}{\int{\frac{e^{x}}{e^{2 x} + 1} d x}}}$$
Sia $$$u=e^{x}$$$.
Quindi $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (i passaggi si possono vedere »), e si ha che $$$e^{x} dx = du$$$.
L'integrale può essere riscritto come
$$2 {\color{red}{\int{\frac{e^{x}}{e^{2 x} + 1} d x}}} = 2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}$$
L'integrale di $$$\frac{1}{u^{2} + 1}$$$ è $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = 2 {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
Ricordiamo che $$$u=e^{x}$$$:
$$2 \operatorname{atan}{\left({\color{red}{u}} \right)} = 2 \operatorname{atan}{\left({\color{red}{e^{x}}} \right)}$$
Pertanto,
$$\int{\operatorname{sech}{\left(x \right)} d x} = 2 \operatorname{atan}{\left(e^{x} \right)}$$
Aggiungi la costante di integrazione:
$$\int{\operatorname{sech}{\left(x \right)} d x} = 2 \operatorname{atan}{\left(e^{x} \right)}+C$$
Risposta
$$$\int \operatorname{sech}{\left(x \right)}\, dx = 2 \operatorname{atan}{\left(e^{x} \right)} + C$$$A