$$$\sqrt{q}$$$의 적분
사용자 입력
$$$\int \sqrt{q}\, dq$$$을(를) 구하시오.
풀이
멱법칙($$$\int q^{n}\, dq = \frac{q^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=\frac{1}{2}$$$에 적용합니다:
$${\color{red}{\int{\sqrt{q} d q}}}={\color{red}{\int{q^{\frac{1}{2}} d q}}}={\color{red}{\frac{q^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 q^{\frac{3}{2}}}{3}\right)}}$$
따라서,
$$\int{\sqrt{q} d q} = \frac{2 q^{\frac{3}{2}}}{3}$$
적분 상수를 추가하세요:
$$\int{\sqrt{q} d q} = \frac{2 q^{\frac{3}{2}}}{3}+C$$
정답
$$$\int \sqrt{q}\, dq = \frac{2 q^{\frac{3}{2}}}{3} + C$$$A
Please try a new game Rotatly