$$$x e^{6} \sin{\left(7 x \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$x e^{6} \sin{\left(7 x \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int x e^{6} \sin{\left(7 x \right)}\, dx$$$을(를) 구하시오.

풀이

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=e^{6}$$$$$$f{\left(x \right)} = x \sin{\left(7 x \right)}$$$에 적용하세요:

$${\color{red}{\int{x e^{6} \sin{\left(7 x \right)} d x}}} = {\color{red}{e^{6} \int{x \sin{\left(7 x \right)} d x}}}$$

적분 $$$\int{x \sin{\left(7 x \right)} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=\sin{\left(7 x \right)} dx$$$라고 하자.

그러면 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{\sin{\left(7 x \right)} d x}=- \frac{\cos{\left(7 x \right)}}{7}$$$ (»에서 풀이 과정을 볼 수 있음).

따라서,

$$e^{6} {\color{red}{\int{x \sin{\left(7 x \right)} d x}}}=e^{6} {\color{red}{\left(x \cdot \left(- \frac{\cos{\left(7 x \right)}}{7}\right)-\int{\left(- \frac{\cos{\left(7 x \right)}}{7}\right) \cdot 1 d x}\right)}}=e^{6} {\color{red}{\left(- \frac{x \cos{\left(7 x \right)}}{7} - \int{\left(- \frac{\cos{\left(7 x \right)}}{7}\right)d x}\right)}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=- \frac{1}{7}$$$$$$f{\left(x \right)} = \cos{\left(7 x \right)}$$$에 적용하세요:

$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} - {\color{red}{\int{\left(- \frac{\cos{\left(7 x \right)}}{7}\right)d x}}}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} - {\color{red}{\left(- \frac{\int{\cos{\left(7 x \right)} d x}}{7}\right)}}\right)$$

$$$u=7 x$$$라 하자.

그러면 $$$du=\left(7 x\right)^{\prime }dx = 7 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{7}$$$임을 얻습니다.

적분은 다음과 같이 됩니다.

$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\int{\cos{\left(7 x \right)} d x}}}}{7}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{7} d u}}}}{7}\right)$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{7}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:

$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{7} d u}}}}{7}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{7}\right)}}}{7}\right)$$

코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{49}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\sin{\left(u \right)}}}}{49}\right)$$

다음 $$$u=7 x$$$을 기억하라:

$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{\sin{\left({\color{red}{u}} \right)}}{49}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{\sin{\left({\color{red}{\left(7 x\right)}} \right)}}{49}\right)$$

따라서,

$$\int{x e^{6} \sin{\left(7 x \right)} d x} = \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{\sin{\left(7 x \right)}}{49}\right) e^{6}$$

간단히 하시오:

$$\int{x e^{6} \sin{\left(7 x \right)} d x} = \frac{\left(- 7 x \cos{\left(7 x \right)} + \sin{\left(7 x \right)}\right) e^{6}}{49}$$

적분 상수를 추가하세요:

$$\int{x e^{6} \sin{\left(7 x \right)} d x} = \frac{\left(- 7 x \cos{\left(7 x \right)} + \sin{\left(7 x \right)}\right) e^{6}}{49}+C$$

정답

$$$\int x e^{6} \sin{\left(7 x \right)}\, dx = \frac{\left(- 7 x \cos{\left(7 x \right)} + \sin{\left(7 x \right)}\right) e^{6}}{49} + C$$$A


Please try a new game Rotatly