Funktion $$$x e^{6} \sin{\left(7 x \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int x e^{6} \sin{\left(7 x \right)}\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=e^{6}$$$ ja $$$f{\left(x \right)} = x \sin{\left(7 x \right)}$$$:
$${\color{red}{\int{x e^{6} \sin{\left(7 x \right)} d x}}} = {\color{red}{e^{6} \int{x \sin{\left(7 x \right)} d x}}}$$
Integraalin $$$\int{x \sin{\left(7 x \right)} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Olkoon $$$\operatorname{u}=x$$$ ja $$$\operatorname{dv}=\sin{\left(7 x \right)} dx$$$.
Tällöin $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{\sin{\left(7 x \right)} d x}=- \frac{\cos{\left(7 x \right)}}{7}$$$ (vaiheet ovat nähtävissä »).
Integraali voidaan kirjoittaa muotoon
$$e^{6} {\color{red}{\int{x \sin{\left(7 x \right)} d x}}}=e^{6} {\color{red}{\left(x \cdot \left(- \frac{\cos{\left(7 x \right)}}{7}\right)-\int{\left(- \frac{\cos{\left(7 x \right)}}{7}\right) \cdot 1 d x}\right)}}=e^{6} {\color{red}{\left(- \frac{x \cos{\left(7 x \right)}}{7} - \int{\left(- \frac{\cos{\left(7 x \right)}}{7}\right)d x}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=- \frac{1}{7}$$$ ja $$$f{\left(x \right)} = \cos{\left(7 x \right)}$$$:
$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} - {\color{red}{\int{\left(- \frac{\cos{\left(7 x \right)}}{7}\right)d x}}}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} - {\color{red}{\left(- \frac{\int{\cos{\left(7 x \right)} d x}}{7}\right)}}\right)$$
Olkoon $$$u=7 x$$$.
Tällöin $$$du=\left(7 x\right)^{\prime }dx = 7 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{7}$$$.
Siis,
$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\int{\cos{\left(7 x \right)} d x}}}}{7}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{7} d u}}}}{7}\right)$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{7}$$$ ja $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{7} d u}}}}{7}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{7}\right)}}}{7}\right)$$
Kosinin integraali on $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{49}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\sin{\left(u \right)}}}}{49}\right)$$
Muista, että $$$u=7 x$$$:
$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{\sin{\left({\color{red}{u}} \right)}}{49}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{\sin{\left({\color{red}{\left(7 x\right)}} \right)}}{49}\right)$$
Näin ollen,
$$\int{x e^{6} \sin{\left(7 x \right)} d x} = \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{\sin{\left(7 x \right)}}{49}\right) e^{6}$$
Sievennä:
$$\int{x e^{6} \sin{\left(7 x \right)} d x} = \frac{\left(- 7 x \cos{\left(7 x \right)} + \sin{\left(7 x \right)}\right) e^{6}}{49}$$
Lisää integrointivakio:
$$\int{x e^{6} \sin{\left(7 x \right)} d x} = \frac{\left(- 7 x \cos{\left(7 x \right)} + \sin{\left(7 x \right)}\right) e^{6}}{49}+C$$
Vastaus
$$$\int x e^{6} \sin{\left(7 x \right)}\, dx = \frac{\left(- 7 x \cos{\left(7 x \right)} + \sin{\left(7 x \right)}\right) e^{6}}{49} + C$$$A