$$$x e^{6} \sin{\left(7 x \right)}$$$ 的積分
您的輸入
求$$$\int x e^{6} \sin{\left(7 x \right)}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=e^{6}$$$ 與 $$$f{\left(x \right)} = x \sin{\left(7 x \right)}$$$:
$${\color{red}{\int{x e^{6} \sin{\left(7 x \right)} d x}}} = {\color{red}{e^{6} \int{x \sin{\left(7 x \right)} d x}}}$$
對於積分 $$$\int{x \sin{\left(7 x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=x$$$ 與 $$$\operatorname{dv}=\sin{\left(7 x \right)} dx$$$。
則 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{\sin{\left(7 x \right)} d x}=- \frac{\cos{\left(7 x \right)}}{7}$$$(步驟見 »)。
該積分變為
$$e^{6} {\color{red}{\int{x \sin{\left(7 x \right)} d x}}}=e^{6} {\color{red}{\left(x \cdot \left(- \frac{\cos{\left(7 x \right)}}{7}\right)-\int{\left(- \frac{\cos{\left(7 x \right)}}{7}\right) \cdot 1 d x}\right)}}=e^{6} {\color{red}{\left(- \frac{x \cos{\left(7 x \right)}}{7} - \int{\left(- \frac{\cos{\left(7 x \right)}}{7}\right)d x}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=- \frac{1}{7}$$$ 與 $$$f{\left(x \right)} = \cos{\left(7 x \right)}$$$:
$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} - {\color{red}{\int{\left(- \frac{\cos{\left(7 x \right)}}{7}\right)d x}}}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} - {\color{red}{\left(- \frac{\int{\cos{\left(7 x \right)} d x}}{7}\right)}}\right)$$
令 $$$u=7 x$$$。
則 $$$du=\left(7 x\right)^{\prime }dx = 7 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{7}$$$。
因此,
$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\int{\cos{\left(7 x \right)} d x}}}}{7}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{7} d u}}}}{7}\right)$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{7}$$$ 與 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{7} d u}}}}{7}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{7}\right)}}}{7}\right)$$
餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{49}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{{\color{red}{\sin{\left(u \right)}}}}{49}\right)$$
回顧一下 $$$u=7 x$$$:
$$e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{\sin{\left({\color{red}{u}} \right)}}{49}\right) = e^{6} \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{\sin{\left({\color{red}{\left(7 x\right)}} \right)}}{49}\right)$$
因此,
$$\int{x e^{6} \sin{\left(7 x \right)} d x} = \left(- \frac{x \cos{\left(7 x \right)}}{7} + \frac{\sin{\left(7 x \right)}}{49}\right) e^{6}$$
化簡:
$$\int{x e^{6} \sin{\left(7 x \right)} d x} = \frac{\left(- 7 x \cos{\left(7 x \right)} + \sin{\left(7 x \right)}\right) e^{6}}{49}$$
加上積分常數:
$$\int{x e^{6} \sin{\left(7 x \right)} d x} = \frac{\left(- 7 x \cos{\left(7 x \right)} + \sin{\left(7 x \right)}\right) e^{6}}{49}+C$$
答案
$$$\int x e^{6} \sin{\left(7 x \right)}\, dx = \frac{\left(- 7 x \cos{\left(7 x \right)} + \sin{\left(7 x \right)}\right) e^{6}}{49} + C$$$A