$$$x$$$에 대한 $$$- a^{2} + \frac{a}{x^{2}}$$$의 적분

계산기는 $$$x$$$에 대한 $$$- a^{2} + \frac{a}{x^{2}}$$$의 적분/원시함수를 단계별로 찾아줍니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \left(- a^{2} + \frac{a}{x^{2}}\right)\, dx$$$을(를) 구하시오.

풀이

각 항별로 적분하십시오:

$${\color{red}{\int{\left(- a^{2} + \frac{a}{x^{2}}\right)d x}}} = {\color{red}{\left(- \int{a^{2} d x} + \int{\frac{a}{x^{2}} d x}\right)}}$$

상수 법칙 $$$\int c\, dx = c x$$$$$$c=a^{2}$$$에 적용하십시오:

$$\int{\frac{a}{x^{2}} d x} - {\color{red}{\int{a^{2} d x}}} = \int{\frac{a}{x^{2}} d x} - {\color{red}{a^{2} x}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=a$$$$$$f{\left(x \right)} = \frac{1}{x^{2}}$$$에 적용하세요:

$$- a^{2} x + {\color{red}{\int{\frac{a}{x^{2}} d x}}} = - a^{2} x + {\color{red}{a \int{\frac{1}{x^{2}} d x}}}$$

멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-2$$$에 적용합니다:

$$- a^{2} x + a {\color{red}{\int{\frac{1}{x^{2}} d x}}}=- a^{2} x + a {\color{red}{\int{x^{-2} d x}}}=- a^{2} x + a {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=- a^{2} x + a {\color{red}{\left(- x^{-1}\right)}}=- a^{2} x + a {\color{red}{\left(- \frac{1}{x}\right)}}$$

따라서,

$$\int{\left(- a^{2} + \frac{a}{x^{2}}\right)d x} = - a^{2} x - \frac{a}{x}$$

적분 상수를 추가하세요:

$$\int{\left(- a^{2} + \frac{a}{x^{2}}\right)d x} = - a^{2} x - \frac{a}{x}+C$$

정답

$$$\int \left(- a^{2} + \frac{a}{x^{2}}\right)\, dx = \left(- a^{2} x - \frac{a}{x}\right) + C$$$A


Please try a new game Rotatly