$$$x$$$에 대한 $$$- a^{2} + \frac{a}{x^{2}}$$$의 적분
사용자 입력
$$$\int \left(- a^{2} + \frac{a}{x^{2}}\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(- a^{2} + \frac{a}{x^{2}}\right)d x}}} = {\color{red}{\left(- \int{a^{2} d x} + \int{\frac{a}{x^{2}} d x}\right)}}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=a^{2}$$$에 적용하십시오:
$$\int{\frac{a}{x^{2}} d x} - {\color{red}{\int{a^{2} d x}}} = \int{\frac{a}{x^{2}} d x} - {\color{red}{a^{2} x}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=a$$$와 $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$에 적용하세요:
$$- a^{2} x + {\color{red}{\int{\frac{a}{x^{2}} d x}}} = - a^{2} x + {\color{red}{a \int{\frac{1}{x^{2}} d x}}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-2$$$에 적용합니다:
$$- a^{2} x + a {\color{red}{\int{\frac{1}{x^{2}} d x}}}=- a^{2} x + a {\color{red}{\int{x^{-2} d x}}}=- a^{2} x + a {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=- a^{2} x + a {\color{red}{\left(- x^{-1}\right)}}=- a^{2} x + a {\color{red}{\left(- \frac{1}{x}\right)}}$$
따라서,
$$\int{\left(- a^{2} + \frac{a}{x^{2}}\right)d x} = - a^{2} x - \frac{a}{x}$$
적분 상수를 추가하세요:
$$\int{\left(- a^{2} + \frac{a}{x^{2}}\right)d x} = - a^{2} x - \frac{a}{x}+C$$
정답
$$$\int \left(- a^{2} + \frac{a}{x^{2}}\right)\, dx = \left(- a^{2} x - \frac{a}{x}\right) + C$$$A