Ολοκλήρωμα της $$$- a^{2} + \frac{a}{x^{2}}$$$ ως προς $$$x$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$- a^{2} + \frac{a}{x^{2}}$$$ ως προς $$$x$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(- a^{2} + \frac{a}{x^{2}}\right)\, dx$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(- a^{2} + \frac{a}{x^{2}}\right)d x}}} = {\color{red}{\left(- \int{a^{2} d x} + \int{\frac{a}{x^{2}} d x}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=a^{2}$$$:

$$\int{\frac{a}{x^{2}} d x} - {\color{red}{\int{a^{2} d x}}} = \int{\frac{a}{x^{2}} d x} - {\color{red}{a^{2} x}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=a$$$ και $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:

$$- a^{2} x + {\color{red}{\int{\frac{a}{x^{2}} d x}}} = - a^{2} x + {\color{red}{a \int{\frac{1}{x^{2}} d x}}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=-2$$$:

$$- a^{2} x + a {\color{red}{\int{\frac{1}{x^{2}} d x}}}=- a^{2} x + a {\color{red}{\int{x^{-2} d x}}}=- a^{2} x + a {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=- a^{2} x + a {\color{red}{\left(- x^{-1}\right)}}=- a^{2} x + a {\color{red}{\left(- \frac{1}{x}\right)}}$$

Επομένως,

$$\int{\left(- a^{2} + \frac{a}{x^{2}}\right)d x} = - a^{2} x - \frac{a}{x}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(- a^{2} + \frac{a}{x^{2}}\right)d x} = - a^{2} x - \frac{a}{x}+C$$

Απάντηση

$$$\int \left(- a^{2} + \frac{a}{x^{2}}\right)\, dx = \left(- a^{2} x - \frac{a}{x}\right) + C$$$A


Please try a new game Rotatly