Integral dari $$$- a^{2} + \frac{a}{x^{2}}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(- a^{2} + \frac{a}{x^{2}}\right)\, dx$$$.
Solusi
Integralkan suku demi suku:
$${\color{red}{\int{\left(- a^{2} + \frac{a}{x^{2}}\right)d x}}} = {\color{red}{\left(- \int{a^{2} d x} + \int{\frac{a}{x^{2}} d x}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=a^{2}$$$:
$$\int{\frac{a}{x^{2}} d x} - {\color{red}{\int{a^{2} d x}}} = \int{\frac{a}{x^{2}} d x} - {\color{red}{a^{2} x}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=a$$$ dan $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:
$$- a^{2} x + {\color{red}{\int{\frac{a}{x^{2}} d x}}} = - a^{2} x + {\color{red}{a \int{\frac{1}{x^{2}} d x}}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=-2$$$:
$$- a^{2} x + a {\color{red}{\int{\frac{1}{x^{2}} d x}}}=- a^{2} x + a {\color{red}{\int{x^{-2} d x}}}=- a^{2} x + a {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=- a^{2} x + a {\color{red}{\left(- x^{-1}\right)}}=- a^{2} x + a {\color{red}{\left(- \frac{1}{x}\right)}}$$
Oleh karena itu,
$$\int{\left(- a^{2} + \frac{a}{x^{2}}\right)d x} = - a^{2} x - \frac{a}{x}$$
Tambahkan konstanta integrasi:
$$\int{\left(- a^{2} + \frac{a}{x^{2}}\right)d x} = - a^{2} x - \frac{a}{x}+C$$
Jawaban
$$$\int \left(- a^{2} + \frac{a}{x^{2}}\right)\, dx = \left(- a^{2} x - \frac{a}{x}\right) + C$$$A