$$$\frac{1}{2 - x^{2}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{1}{2 - x^{2}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{1}{2 - x^{2}}\, dx$$$을(를) 구하시오.

풀이

부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):

$${\color{red}{\int{\frac{1}{2 - x^{2}} d x}}} = {\color{red}{\int{\left(\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} - \frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)}\right)d x}}}$$

각 항별로 적분하십시오:

$${\color{red}{\int{\left(\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} - \frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)} d x} + \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x}\right)}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{\sqrt{2}}{4}$$$$$$f{\left(x \right)} = \frac{1}{x - \sqrt{2}}$$$에 적용하세요:

$$\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - {\color{red}{\int{\frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)} d x}}} = \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{x - \sqrt{2}} d x}}{4}\right)}}$$

$$$u=x - \sqrt{2}$$$라 하자.

그러면 $$$du=\left(x - \sqrt{2}\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.

따라서,

$$\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{x - \sqrt{2}} d x}}}}{4} = \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4}$$

$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4} = \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$

다음 $$$u=x - \sqrt{2}$$$을 기억하라:

$$- \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} + \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} = - \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(x - \sqrt{2}\right)}}}\right| \right)}}{4} + \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{\sqrt{2}}{4}$$$$$$f{\left(x \right)} = \frac{1}{x + \sqrt{2}}$$$에 적용하세요:

$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + {\color{red}{\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x}}} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{x + \sqrt{2}} d x}}{4}\right)}}$$

$$$u=x + \sqrt{2}$$$라 하자.

그러면 $$$du=\left(x + \sqrt{2}\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.

따라서,

$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{x + \sqrt{2}} d x}}}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4}$$

$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$

다음 $$$u=x + \sqrt{2}$$$을 기억하라:

$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(x + \sqrt{2}\right)}}}\right| \right)}}{4}$$

따라서,

$$\int{\frac{1}{2 - x^{2}} d x} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{x + \sqrt{2}}\right| \right)}}{4}$$

간단히 하시오:

$$\int{\frac{1}{2 - x^{2}} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x - \sqrt{2}}\right| \right)} + \ln{\left(\left|{x + \sqrt{2}}\right| \right)}\right)}{4}$$

적분 상수를 추가하세요:

$$\int{\frac{1}{2 - x^{2}} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x - \sqrt{2}}\right| \right)} + \ln{\left(\left|{x + \sqrt{2}}\right| \right)}\right)}{4}+C$$

정답

$$$\int \frac{1}{2 - x^{2}}\, dx = \frac{\sqrt{2} \left(- \ln\left(\left|{x - \sqrt{2}}\right|\right) + \ln\left(\left|{x + \sqrt{2}}\right|\right)\right)}{4} + C$$$A


Please try a new game Rotatly