$$$\frac{1}{2 - x^{2}}$$$의 적분
사용자 입력
$$$\int \frac{1}{2 - x^{2}}\, dx$$$을(를) 구하시오.
풀이
부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):
$${\color{red}{\int{\frac{1}{2 - x^{2}} d x}}} = {\color{red}{\int{\left(\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} - \frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)}\right)d x}}}$$
각 항별로 적분하십시오:
$${\color{red}{\int{\left(\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} - \frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)} d x} + \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{\sqrt{2}}{4}$$$와 $$$f{\left(x \right)} = \frac{1}{x - \sqrt{2}}$$$에 적용하세요:
$$\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - {\color{red}{\int{\frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)} d x}}} = \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{x - \sqrt{2}} d x}}{4}\right)}}$$
$$$u=x - \sqrt{2}$$$라 하자.
그러면 $$$du=\left(x - \sqrt{2}\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.
따라서,
$$\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{x - \sqrt{2}} d x}}}}{4} = \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4} = \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$
다음 $$$u=x - \sqrt{2}$$$을 기억하라:
$$- \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} + \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} = - \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(x - \sqrt{2}\right)}}}\right| \right)}}{4} + \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{\sqrt{2}}{4}$$$와 $$$f{\left(x \right)} = \frac{1}{x + \sqrt{2}}$$$에 적용하세요:
$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + {\color{red}{\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x}}} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{x + \sqrt{2}} d x}}{4}\right)}}$$
$$$u=x + \sqrt{2}$$$라 하자.
그러면 $$$du=\left(x + \sqrt{2}\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.
따라서,
$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{x + \sqrt{2}} d x}}}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$
다음 $$$u=x + \sqrt{2}$$$을 기억하라:
$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(x + \sqrt{2}\right)}}}\right| \right)}}{4}$$
따라서,
$$\int{\frac{1}{2 - x^{2}} d x} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{x + \sqrt{2}}\right| \right)}}{4}$$
간단히 하시오:
$$\int{\frac{1}{2 - x^{2}} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x - \sqrt{2}}\right| \right)} + \ln{\left(\left|{x + \sqrt{2}}\right| \right)}\right)}{4}$$
적분 상수를 추가하세요:
$$\int{\frac{1}{2 - x^{2}} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x - \sqrt{2}}\right| \right)} + \ln{\left(\left|{x + \sqrt{2}}\right| \right)}\right)}{4}+C$$
정답
$$$\int \frac{1}{2 - x^{2}}\, dx = \frac{\sqrt{2} \left(- \ln\left(\left|{x - \sqrt{2}}\right|\right) + \ln\left(\left|{x + \sqrt{2}}\right|\right)\right)}{4} + C$$$A