Integral dari $$$\frac{1}{2 - x^{2}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{2 - x^{2}}\, dx$$$.
Solusi
Lakukan dekomposisi pecahan parsial (langkah-langkah dapat dilihat di »):
$${\color{red}{\int{\frac{1}{2 - x^{2}} d x}}} = {\color{red}{\int{\left(\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} - \frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)}\right)d x}}}$$
Integralkan suku demi suku:
$${\color{red}{\int{\left(\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} - \frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)} d x} + \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x}\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{\sqrt{2}}{4}$$$ dan $$$f{\left(x \right)} = \frac{1}{x - \sqrt{2}}$$$:
$$\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - {\color{red}{\int{\frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)} d x}}} = \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{x - \sqrt{2}} d x}}{4}\right)}}$$
Misalkan $$$u=x - \sqrt{2}$$$.
Kemudian $$$du=\left(x - \sqrt{2}\right)^{\prime }dx = 1 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = du$$$.
Oleh karena itu,
$$\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{x - \sqrt{2}} d x}}}}{4} = \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4} = \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$
Ingat bahwa $$$u=x - \sqrt{2}$$$:
$$- \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} + \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} = - \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(x - \sqrt{2}\right)}}}\right| \right)}}{4} + \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{\sqrt{2}}{4}$$$ dan $$$f{\left(x \right)} = \frac{1}{x + \sqrt{2}}$$$:
$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + {\color{red}{\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x}}} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{x + \sqrt{2}} d x}}{4}\right)}}$$
Misalkan $$$u=x + \sqrt{2}$$$.
Kemudian $$$du=\left(x + \sqrt{2}\right)^{\prime }dx = 1 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = du$$$.
Integral tersebut dapat ditulis ulang sebagai
$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{x + \sqrt{2}} d x}}}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$
Ingat bahwa $$$u=x + \sqrt{2}$$$:
$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(x + \sqrt{2}\right)}}}\right| \right)}}{4}$$
Oleh karena itu,
$$\int{\frac{1}{2 - x^{2}} d x} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{x + \sqrt{2}}\right| \right)}}{4}$$
Sederhanakan:
$$\int{\frac{1}{2 - x^{2}} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x - \sqrt{2}}\right| \right)} + \ln{\left(\left|{x + \sqrt{2}}\right| \right)}\right)}{4}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{2 - x^{2}} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x - \sqrt{2}}\right| \right)} + \ln{\left(\left|{x + \sqrt{2}}\right| \right)}\right)}{4}+C$$
Jawaban
$$$\int \frac{1}{2 - x^{2}}\, dx = \frac{\sqrt{2} \left(- \ln\left(\left|{x - \sqrt{2}}\right|\right) + \ln\left(\left|{x + \sqrt{2}}\right|\right)\right)}{4} + C$$$A