Integraal van $$$\frac{1}{2 - x^{2}}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{1}{2 - x^{2}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{1}{2 - x^{2}}\, dx$$$.

Oplossing

Voer een ontbinding in partiële breuken uit (stappen zijn te zien »):

$${\color{red}{\int{\frac{1}{2 - x^{2}} d x}}} = {\color{red}{\int{\left(\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} - \frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)}\right)d x}}}$$

Integreer termgewijs:

$${\color{red}{\int{\left(\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} - \frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)} d x} + \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{\sqrt{2}}{4}$$$ en $$$f{\left(x \right)} = \frac{1}{x - \sqrt{2}}$$$:

$$\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - {\color{red}{\int{\frac{\sqrt{2}}{4 \left(x - \sqrt{2}\right)} d x}}} = \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{x - \sqrt{2}} d x}}{4}\right)}}$$

Zij $$$u=x - \sqrt{2}$$$.

Dan $$$du=\left(x - \sqrt{2}\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.

Dus,

$$\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{x - \sqrt{2}} d x}}}}{4} = \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4} = \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} - \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$

We herinneren eraan dat $$$u=x - \sqrt{2}$$$:

$$- \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} + \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x} = - \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(x - \sqrt{2}\right)}}}\right| \right)}}{4} + \int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{\sqrt{2}}{4}$$$ en $$$f{\left(x \right)} = \frac{1}{x + \sqrt{2}}$$$:

$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + {\color{red}{\int{\frac{\sqrt{2}}{4 \left(x + \sqrt{2}\right)} d x}}} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{x + \sqrt{2}} d x}}{4}\right)}}$$

Zij $$$u=x + \sqrt{2}$$$.

Dan $$$du=\left(x + \sqrt{2}\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.

Dus,

$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{x + \sqrt{2}} d x}}}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$

We herinneren eraan dat $$$u=x + \sqrt{2}$$$:

$$- \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(x + \sqrt{2}\right)}}}\right| \right)}}{4}$$

Dus,

$$\int{\frac{1}{2 - x^{2}} d x} = - \frac{\sqrt{2} \ln{\left(\left|{x - \sqrt{2}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{x + \sqrt{2}}\right| \right)}}{4}$$

Vereenvoudig:

$$\int{\frac{1}{2 - x^{2}} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x - \sqrt{2}}\right| \right)} + \ln{\left(\left|{x + \sqrt{2}}\right| \right)}\right)}{4}$$

Voeg de integratieconstante toe:

$$\int{\frac{1}{2 - x^{2}} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x - \sqrt{2}}\right| \right)} + \ln{\left(\left|{x + \sqrt{2}}\right| \right)}\right)}{4}+C$$

Antwoord

$$$\int \frac{1}{2 - x^{2}}\, dx = \frac{\sqrt{2} \left(- \ln\left(\left|{x - \sqrt{2}}\right|\right) + \ln\left(\left|{x + \sqrt{2}}\right|\right)\right)}{4} + C$$$A


Please try a new game Rotatly