$$$x^{\frac{3}{2}}$$$の積分
入力内容
$$$\int x^{\frac{3}{2}}\, dx$$$ を求めよ。
解答
$$$n=\frac{3}{2}$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$${\color{red}{\int{x^{\frac{3}{2}} d x}}}={\color{red}{\frac{x^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}={\color{red}{\left(\frac{2 x^{\frac{5}{2}}}{5}\right)}}$$
したがって、
$$\int{x^{\frac{3}{2}} d x} = \frac{2 x^{\frac{5}{2}}}{5}$$
積分定数を加える:
$$\int{x^{\frac{3}{2}} d x} = \frac{2 x^{\frac{5}{2}}}{5}+C$$
解答
$$$\int x^{\frac{3}{2}}\, dx = \frac{2 x^{\frac{5}{2}}}{5} + C$$$A
Please try a new game Rotatly