Integral of $$$x^{\frac{3}{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{\frac{3}{2}}\, dx$$$.
Solution
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{3}{2}$$$:
$${\color{red}{\int{x^{\frac{3}{2}} d x}}}={\color{red}{\frac{x^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}={\color{red}{\left(\frac{2 x^{\frac{5}{2}}}{5}\right)}}$$
Therefore,
$$\int{x^{\frac{3}{2}} d x} = \frac{2 x^{\frac{5}{2}}}{5}$$
Add the constant of integration:
$$\int{x^{\frac{3}{2}} d x} = \frac{2 x^{\frac{5}{2}}}{5}+C$$
Answer
$$$\int x^{\frac{3}{2}}\, dx = \frac{2 x^{\frac{5}{2}}}{5} + C$$$A
Please try a new game Rotatly