$$$\frac{\sec{\left(x \right)}}{\sin{\left(x \right)}}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{\sec{\left(x \right)}}{\sin{\left(x \right)}}\, dx$$$ を求めよ。
解答
被積分関数を簡単化する:
$${\color{red}{\int{\frac{\sec{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{2}{\sin{\left(2 x \right)}} d x}}}$$
二倍角の公式を用いて正弦を書き換える $$$\sin\left(2 x\right)=2\sin\left(\frac{2 x}{2}\right)\cos\left(\frac{2 x}{2}\right)$$$:
$${\color{red}{\int{\frac{2}{\sin{\left(2 x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x}}}$$
分子と分母に$$$\sec^2\left(x \right)$$$を掛ける:
$${\color{red}{\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\tan{\left(x \right)}} d x}}}$$
$$$u=\tan{\left(x \right)}$$$ とする。
すると $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$(手順は»で確認できます)、$$$\sec^{2}{\left(x \right)} dx = du$$$ となります。
この積分は次のように書き換えられる
$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\tan{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
次のことを思い出してください $$$u=\tan{\left(x \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\tan{\left(x \right)}}}}\right| \right)}$$
したがって、
$$\int{\frac{\sec{\left(x \right)}}{\sin{\left(x \right)}} d x} = \ln{\left(\left|{\tan{\left(x \right)}}\right| \right)}$$
積分定数を加える:
$$\int{\frac{\sec{\left(x \right)}}{\sin{\left(x \right)}} d x} = \ln{\left(\left|{\tan{\left(x \right)}}\right| \right)}+C$$
解答
$$$\int \frac{\sec{\left(x \right)}}{\sin{\left(x \right)}}\, dx = \ln\left(\left|{\tan{\left(x \right)}}\right|\right) + C$$$A