Integral dari $$$\frac{\sec{\left(x \right)}}{\sin{\left(x \right)}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\sec{\left(x \right)}}{\sin{\left(x \right)}}\, dx$$$.
Solusi
Sederhanakan integran:
$${\color{red}{\int{\frac{\sec{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{2}{\sin{\left(2 x \right)}} d x}}}$$
Tulis ulang sinus menggunakan rumus sudut ganda $$$\sin\left(2 x\right)=2\sin\left(\frac{2 x}{2}\right)\cos\left(\frac{2 x}{2}\right)$$$:
$${\color{red}{\int{\frac{2}{\sin{\left(2 x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x}}}$$
Kalikan pembilang dan penyebut dengan $$$\sec^2\left(x \right)$$$:
$${\color{red}{\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\tan{\left(x \right)}} d x}}}$$
Misalkan $$$u=\tan{\left(x \right)}$$$.
Kemudian $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sec^{2}{\left(x \right)} dx = du$$$.
Oleh karena itu,
$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\tan{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Ingat bahwa $$$u=\tan{\left(x \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\tan{\left(x \right)}}}}\right| \right)}$$
Oleh karena itu,
$$\int{\frac{\sec{\left(x \right)}}{\sin{\left(x \right)}} d x} = \ln{\left(\left|{\tan{\left(x \right)}}\right| \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\sec{\left(x \right)}}{\sin{\left(x \right)}} d x} = \ln{\left(\left|{\tan{\left(x \right)}}\right| \right)}+C$$
Jawaban
$$$\int \frac{\sec{\left(x \right)}}{\sin{\left(x \right)}}\, dx = \ln\left(\left|{\tan{\left(x \right)}}\right|\right) + C$$$A