Integral de $$$\frac{\sec{\left(x \right)}}{\sin{\left(x \right)}}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{\sec{\left(x \right)}}{\sin{\left(x \right)}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{\sec{\left(x \right)}}{\sin{\left(x \right)}}\, dx$$$.

Solución

Simplificar el integrando:

$${\color{red}{\int{\frac{\sec{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{2}{\sin{\left(2 x \right)}} d x}}}$$

Reescribe el seno utilizando la fórmula del ángulo doble $$$\sin\left(2 x\right)=2\sin\left(\frac{2 x}{2}\right)\cos\left(\frac{2 x}{2}\right)$$$:

$${\color{red}{\int{\frac{2}{\sin{\left(2 x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x}}}$$

Multiplica el numerador y el denominador por $$$\sec^2\left(x \right)$$$:

$${\color{red}{\int{\frac{1}{\sin{\left(x \right)} \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\tan{\left(x \right)}} d x}}}$$

Sea $$$u=\tan{\left(x \right)}$$$.

Entonces $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\sec^{2}{\left(x \right)} dx = du$$$.

La integral se convierte en

$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\tan{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$

La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recordemos que $$$u=\tan{\left(x \right)}$$$:

$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\tan{\left(x \right)}}}}\right| \right)}$$

Por lo tanto,

$$\int{\frac{\sec{\left(x \right)}}{\sin{\left(x \right)}} d x} = \ln{\left(\left|{\tan{\left(x \right)}}\right| \right)}$$

Añade la constante de integración:

$$\int{\frac{\sec{\left(x \right)}}{\sin{\left(x \right)}} d x} = \ln{\left(\left|{\tan{\left(x \right)}}\right| \right)}+C$$

Respuesta

$$$\int \frac{\sec{\left(x \right)}}{\sin{\left(x \right)}}\, dx = \ln\left(\left|{\tan{\left(x \right)}}\right|\right) + C$$$A


Please try a new game Rotatly