$$$3 \cos{\left(x \right)}$$$の積分
入力内容
$$$\int 3 \cos{\left(x \right)}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=3$$$ と $$$f{\left(x \right)} = \cos{\left(x \right)}$$$ に対して適用する:
$${\color{red}{\int{3 \cos{\left(x \right)} d x}}} = {\color{red}{\left(3 \int{\cos{\left(x \right)} d x}\right)}}$$
余弦の積分は$$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$3 {\color{red}{\int{\cos{\left(x \right)} d x}}} = 3 {\color{red}{\sin{\left(x \right)}}}$$
したがって、
$$\int{3 \cos{\left(x \right)} d x} = 3 \sin{\left(x \right)}$$
積分定数を加える:
$$\int{3 \cos{\left(x \right)} d x} = 3 \sin{\left(x \right)}+C$$
解答
$$$\int 3 \cos{\left(x \right)}\, dx = 3 \sin{\left(x \right)} + C$$$A
Please try a new game Rotatly