$$$-1 + \frac{1}{x}$$$の積分

この計算機は、手順を示しながら$$$-1 + \frac{1}{x}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(-1 + \frac{1}{x}\right)\, dx$$$ を求めよ。

解答

項別に積分せよ:

$${\color{red}{\int{\left(-1 + \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{x} d x}\right)}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:

$$\int{\frac{1}{x} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{x} d x} - {\color{red}{x}}$$

$$$\frac{1}{x}$$$ の不定積分は $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$ です:

$$- x + {\color{red}{\int{\frac{1}{x} d x}}} = - x + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

したがって、

$$\int{\left(-1 + \frac{1}{x}\right)d x} = - x + \ln{\left(\left|{x}\right| \right)}$$

積分定数を加える:

$$\int{\left(-1 + \frac{1}{x}\right)d x} = - x + \ln{\left(\left|{x}\right| \right)}+C$$

解答

$$$\int \left(-1 + \frac{1}{x}\right)\, dx = \left(- x + \ln\left(\left|{x}\right|\right)\right) + C$$$A


Please try a new game Rotatly