Integral dari $$$-1 + \frac{1}{x}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(-1 + \frac{1}{x}\right)\, dx$$$.
Solusi
Integralkan suku demi suku:
$${\color{red}{\int{\left(-1 + \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{x} d x}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:
$$\int{\frac{1}{x} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{x} d x} - {\color{red}{x}}$$
Integral dari $$$\frac{1}{x}$$$ adalah $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- x + {\color{red}{\int{\frac{1}{x} d x}}} = - x + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Oleh karena itu,
$$\int{\left(-1 + \frac{1}{x}\right)d x} = - x + \ln{\left(\left|{x}\right| \right)}$$
Tambahkan konstanta integrasi:
$$\int{\left(-1 + \frac{1}{x}\right)d x} = - x + \ln{\left(\left|{x}\right| \right)}+C$$
Jawaban
$$$\int \left(-1 + \frac{1}{x}\right)\, dx = \left(- x + \ln\left(\left|{x}\right|\right)\right) + C$$$A