$$$\frac{1}{x^{\frac{5}{6}}}$$$の積分
入力内容
$$$\int \frac{1}{x^{\frac{5}{6}}}\, dx$$$ を求めよ。
解答
$$$n=- \frac{5}{6}$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$${\color{red}{\int{\frac{1}{x^{\frac{5}{6}}} d x}}}={\color{red}{\int{x^{- \frac{5}{6}} d x}}}={\color{red}{\frac{x^{- \frac{5}{6} + 1}}{- \frac{5}{6} + 1}}}={\color{red}{\left(6 x^{\frac{1}{6}}\right)}}={\color{red}{\left(6 \sqrt[6]{x}\right)}}$$
したがって、
$$\int{\frac{1}{x^{\frac{5}{6}}} d x} = 6 \sqrt[6]{x}$$
積分定数を加える:
$$\int{\frac{1}{x^{\frac{5}{6}}} d x} = 6 \sqrt[6]{x}+C$$
解答
$$$\int \frac{1}{x^{\frac{5}{6}}}\, dx = 6 \sqrt[6]{x} + C$$$A
Please try a new game Rotatly