Integrale di $$$\frac{1}{x^{\frac{5}{6}}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{1}{x^{\frac{5}{6}}}\, dx$$$.
Soluzione
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=- \frac{5}{6}$$$:
$${\color{red}{\int{\frac{1}{x^{\frac{5}{6}}} d x}}}={\color{red}{\int{x^{- \frac{5}{6}} d x}}}={\color{red}{\frac{x^{- \frac{5}{6} + 1}}{- \frac{5}{6} + 1}}}={\color{red}{\left(6 x^{\frac{1}{6}}\right)}}={\color{red}{\left(6 \sqrt[6]{x}\right)}}$$
Pertanto,
$$\int{\frac{1}{x^{\frac{5}{6}}} d x} = 6 \sqrt[6]{x}$$
Aggiungi la costante di integrazione:
$$\int{\frac{1}{x^{\frac{5}{6}}} d x} = 6 \sqrt[6]{x}+C$$
Risposta
$$$\int \frac{1}{x^{\frac{5}{6}}}\, dx = 6 \sqrt[6]{x} + C$$$A