$$$- \frac{x^{2}}{y^{2}}$$$ の $$$x$$$ に関する積分
入力内容
$$$\int \left(- \frac{x^{2}}{y^{2}}\right)\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=- \frac{1}{y^{2}}$$$ と $$$f{\left(x \right)} = x^{2}$$$ に対して適用する:
$${\color{red}{\int{\left(- \frac{x^{2}}{y^{2}}\right)d x}}} = {\color{red}{\left(- \frac{\int{x^{2} d x}}{y^{2}}\right)}}$$
$$$n=2$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- \frac{{\color{red}{\int{x^{2} d x}}}}{y^{2}}=- \frac{{\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{y^{2}}=- \frac{{\color{red}{\left(\frac{x^{3}}{3}\right)}}}{y^{2}}$$
したがって、
$$\int{\left(- \frac{x^{2}}{y^{2}}\right)d x} = - \frac{x^{3}}{3 y^{2}}$$
積分定数を加える:
$$\int{\left(- \frac{x^{2}}{y^{2}}\right)d x} = - \frac{x^{3}}{3 y^{2}}+C$$
解答
$$$\int \left(- \frac{x^{2}}{y^{2}}\right)\, dx = - \frac{x^{3}}{3 y^{2}} + C$$$A