Integral de $$$- \frac{x^{2}}{y^{2}}$$$ con respecto a $$$x$$$

La calculadora encontrará la integral/primitiva de $$$- \frac{x^{2}}{y^{2}}$$$ con respecto a $$$x$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(- \frac{x^{2}}{y^{2}}\right)\, dx$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=- \frac{1}{y^{2}}$$$ y $$$f{\left(x \right)} = x^{2}$$$:

$${\color{red}{\int{\left(- \frac{x^{2}}{y^{2}}\right)d x}}} = {\color{red}{\left(- \frac{\int{x^{2} d x}}{y^{2}}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$- \frac{{\color{red}{\int{x^{2} d x}}}}{y^{2}}=- \frac{{\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{y^{2}}=- \frac{{\color{red}{\left(\frac{x^{3}}{3}\right)}}}{y^{2}}$$

Por lo tanto,

$$\int{\left(- \frac{x^{2}}{y^{2}}\right)d x} = - \frac{x^{3}}{3 y^{2}}$$

Añade la constante de integración:

$$\int{\left(- \frac{x^{2}}{y^{2}}\right)d x} = - \frac{x^{3}}{3 y^{2}}+C$$

Respuesta

$$$\int \left(- \frac{x^{2}}{y^{2}}\right)\, dx = - \frac{x^{3}}{3 y^{2}} + C$$$A


Please try a new game Rotatly