点$$$x = c$$$における$$$x^{3} - 2 x$$$の微分係数
入力内容
$$$\frac{d}{dx} \left(x^{3} - 2 x\right)$$$ を求め、それを$$$x = c$$$で評価せよ。
解答
和/差の導関数は、導関数の和/差である:
$${\color{red}\left(\frac{d}{dx} \left(x^{3} - 2 x\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) - \frac{d}{dx} \left(2 x\right)\right)}$$定数倍の法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ を $$$c = 2$$$ と $$$f{\left(x \right)} = x$$$ に対して適用します:
$$- {\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} + \frac{d}{dx} \left(x^{3}\right) = - {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(x^{3}\right)$$$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- 2 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(x^{3}\right) = - 2 {\color{red}\left(1\right)} + \frac{d}{dx} \left(x^{3}\right)$$冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ を $$$n = 3$$$ に対して適用する:
$${\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} - 2 = {\color{red}\left(3 x^{2}\right)} - 2$$したがって、$$$\frac{d}{dx} \left(x^{3} - 2 x\right) = 3 x^{2} - 2$$$。
最後に、$$$x = c$$$での導関数の値を求めます。
$$$\left(\frac{d}{dx} \left(x^{3} - 2 x\right)\right)|_{\left(x = c\right)} = 3 c^{2} - 2$$$
解答
$$$\frac{d}{dx} \left(x^{3} - 2 x\right) = 3 x^{2} - 2$$$A
$$$\left(\frac{d}{dx} \left(x^{3} - 2 x\right)\right)|_{\left(x = c\right)} = 3 c^{2} - 2$$$A